Block number, descents and Schur positivity of fully commutative elements in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e293" altimg="si126.svg"><mml:msub><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>

نویسندگان

چکیده

The distribution of Coxeter descents and block number over the set fully commutative elements in hyperoctahedral group B n , FC ( ) is studied this paper. We prove that associated Chow quasi-symmetric generating function equal to a non-negative sum products two Schur functions. proof involves decomposition into disjoint union two-sided Barbash–Vogan combinatorial cells, type extension Rubey’s descent preserving involution on 321-avoiding permutations detailed study intersection with S -cosets which yields new subsets called fibers. also compare different Schur-positivity notions, arising from works Poirier.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully commutative elements and lattice walks

An element of a Coxeter group W is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge in the finite case. In this work we deal with any finite or affine Coxeter group W , and we enumerate fully commutative elements according to their Coxeter length. Our appro...

متن کامل

Fully Commutative Elements in the Weyl and Affine Weyl Groups

Let W be a Weyl or affine Weyl group and let Wc be the set of fully commutative elements in W . We associate each w ∈ Wc to a digraph G(w). By using G(w), we give a graph-theoretic description for Lusztig’s a-function on Wc and describe explicitly all the distinguished involutions of W . The results verify two conjectures in our case: one was proposed by myself in [15, Conjecture 8.10] and the ...

متن کامل

Leading coefficients of Kazhdan–Lusztig polynomials and fully commutative elements

Let W be a Coxeter group of type ̃ An−1. We show that the leading coefficient, μ(x,w), of the Kazhdan–Lusztig polynomial Px,w is always equal to 0 or 1 if x is fully commutative (and w is arbitrary).

متن کامل

The Enumeration of Fully Commutative Elements of Coxeter Groups

A Coxeter group element w is fully commutative if any reduced expression for w can be obtained from any other via the interchange of commuting generators. For example, in the symmetric group of degree n, the number of fully commutative elements is the nth Catalan number. The Coxeter groups with finitely many fully commutative elements can be arranged into seven infinite families An , Bn , Dn , ...

متن کامل

Schur-Positivity in a Square

Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem. In this paper we study the Schur-positivity of a family of symmetric functions. Given a partition ν, we denote by νc its complement in a square partition (mm). We conjecture a Schur-positivity criterion for symmetric functions of the form sμ′sμc − sν′sνc , where ν is a partitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2022

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2021.103464